Heat emitters for Heat Pump systems

Bill Bucknell
The Institute

• Founded in 1964
• Systems incorporating circulating pumps needed for small-bore pipework
• Need careful design
• Entry into membership via one-year design course
• Higher grades of membership for consulting engineer members
The Institute

- Membership by qualification
- Membership by experience
- Members chair various industry groups
 - Heating Strategy Group of the Energy Efficiency Partnership for Homes
 - CIBSE Domestic Building Services Panel
 - HHIC Training Group
- Members serve on various committees
 - Most industry related BSI groups include, and some chaired by, IDHEE members
The Institute

- Major contributor to the CIBSE Domestic Guides
 - Domestic Heating Design Guide
 - Underfloor Heating Design & Installation Guide
 - Solar Heating Design & Installation Guide
- Originator of Energy Efficiency for Domestic Heating course and assessment
- Provider of courses
 - Domestic heating design
 - Solar heating design
 - Ground Source Heatpumps system design (work in progress)
Radiators with GSHPs

- Radiator outputs influenced by temperature of circulating heating medium (water)...
- ...and the design air temperature of the space being heated
- The greater the temperature difference between the water and the air, the greater the output per m2 of radiator surface
- Radiators with lower circulating temperatures require greater surface area, i.e. bigger
Radiators with GSHPs

• Radiators installed with older non-condensing boilers were probably oversized in the first place and may well provide the required output with a condensing boiler (not guaranteed)
 – 82°C / 70°C flow / return (non-condensing)
 – 70°C / 50°C flow / return (condensing)

• Radiators installed with GSHPs will need larger radiators (more surface area)
 – 50°C / 42°C flow / return (typical)
Radiators with GSHPs

• So, how much larger?
• To demonstrate the difference we will use a design room temperature of 21°C
• The mean water to air temperature differences for the three system types under discussion are
 – 55 degC for older non-condensing boiler systems
 – 39 degC for modern condensing boiler systems
 – 25 degC for ground source heat pump systems
Radiators with GSHPs

- So, how much larger?
- Radiator outputs are quoted at a mean water to air difference of 50 degC
- If the difference is 55 then the radiator will emit 12.6% more heat than the catalogue states
- If the difference is 39 then the radiator will emit 26.5% LESS heat than the catalogue states
- If the difference is 25 then the radiator will emit 57.7% LESS heat than the catalogue states
Radiators with GSHPs

• So, how much larger?
• For a design heat load of 1500 Watts
• With a non-condensing boiler select a radiator from catalogue for 1332 Watts
Radiators with GSHPs

- So, how much larger?
- For a design heat load of 1500 Watts
- With a condensing boiler select a radiator from catalogue for 2041 Watts

Double Panel
530 high x 1760 wide
Radiators with GSHPs

- So, how much larger?
- For a design heat load of 1500 Watts
- With a heatpump select a radiator from catalogue for 3546 Watts

Double Panel with extra fins
690 high x 1760 wide
Radiators with GSHPs

• Is there a solution?
• Underfloor heating to the rescue!
• If the underfloor heating is designed to provide comfort at design conditions with a flow temperature to the coils of 35°C, the resulting MWT of 31°C will produce between approximately 27 W/m² (deep pile carpet or floorboards) to 49 W/m² (ceramic tiles) from pipes at 200mm centres in a 75mm screed
• A table of typical outputs per m² of heated floor follows
Radiators with GSHPs

- Is there a solution? - Underfloor heating to the rescue!

<table>
<thead>
<tr>
<th></th>
<th>Ceramic tiles</th>
<th>Parquet blocks</th>
<th>Carpet</th>
<th>Deep pile carpet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underfloor pipe centres :: W/m² output</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>200</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>66</td>
<td>49</td>
<td>49</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>31</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiators with GSHPs

- Is there a solution? - Underfloor heating to the rescue!

<table>
<thead>
<tr>
<th>Ceramic tiles</th>
<th>Parquet blocks</th>
<th>Carpet</th>
<th>Deep pile carpet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underfloor pipe centres :: W/m² output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>119</td>
<td>119</td>
<td>93</td>
</tr>
</tbody>
</table>

MWT = 46°C :: (Flow = 50°C) :: Room temp. = 20°C

Source: Underfloor Heating Design & Installation Guide
Radiators with GSHPs

• What does all mean for systems that mix radiators with underfloor heating?

• The heatpump must operate to deliver water to the system at not less than 50°C (to satify the radiators’ requirements)

• This means a typical CoP will be 2.8

• What does this mean for systems with only underfloor heating, on each floor?

• The heatpump can operate to deliver water to the system at 35°C

• This means a typical CoP will be 4.0
Radiators with GSHPs

- Are heat pumps with radiators viable?
- Take a heating system with a design load of 11 kW
- The cost of gas is around 3p per kWh (average)
 - Typical heating season fuel cost £385.00
- The cost of electricity is around 10.8p per kWh (average)
 - Typical heating season fuel cost £445.00 (H/P CoP 2.8)
Underfloor Htg with GSHPs

- Are heat pumps with underfloor heating throughout viable?
- Take a heating system with a design load of 11 kW
- The cost of gas is around 3p per kWh (average)
 - Typical heating season fuel cost £385.00
- The cost of electricity is around 10.8p per kWh (average)
 - Typical heating season fuel cost £312.00 (H/P CoP 4.0)
In conclusion….

- Beneficial to design GSHPs into new build
 - all space heating requirements can be satisfied using underfloor heating
 - CoP of heatpump means cost per kWh of delivered heat is less than natural gas at current prices
 - but consider payback period to cover the difference in cost of gas boiler installation or GSHP installation

- If any radiators used for heat emission
 - lower CoP raises cost per kWh of delivered heat above that of natural gas
 - Cannot raise stored domestic hot water to a safe temperature
In conclusion….

- If any radiators used for heat emission
 - lower CoP raises cost per kWh of delivered heat above that of natural gas
 - but if not on mains gas, GSHPs show significant running cost savings over both oil-fired or LPG-fired boiler/radiator systems
 - still cannot raise stored domestic hot water to a safe temperature
In conclusion….

• Adding GSHPs into existing heating systems
 – not before improving insulation levels in every way possible
 – even with improved insulation (if possible) radiators may not be large enough for lower water temperatures

• If any radiators used for heat emission
 – lower CoP raises cost per kWh of delivered heat above that of natural gas
 • but still lower cost than oil or LPG
 – Cannot raise stored domestic hot water to a safe temperature
....and finally, based on running costs

<table>
<thead>
<tr>
<th></th>
<th>GSHP 35°C</th>
<th>GSHP 50°C</th>
<th>Nat. Gas Boiler</th>
<th>Oil Boiler</th>
<th>LPG Boiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underfloor Heating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>throughout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underfloor Heating,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>part Radiators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiators throughout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DHW (No supplementary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

? Depends on available radiator surface area
Thank you for your attention

CIBSE Domestic Design Guides are available from the IDHEE online shop

Domestic Heating
Underfloor Heating
Solar Heating

www.idhee.org.uk

Institute of Domestic Heating & Environmental Engineers
Southampton 023 8066 8900