Ground Source Heat Pump Association Webinar Series 2021

Electrification of Heat

Efficiency at the Limit!

8th July 2021

Nicolas Léonard Sadi Carnot

- Second Lieutenant & Mechanical Engineer in the French Army, Military Scientist and Physicist
- Reflections on the Motive Power of Fire (Paris, 1824)
- 1st June 1796 24th August 1832
- ► The Father of Thermodynamics!

Further Reading...

- Laws of thermodynamics Wikipedia
- ► 0th Law Defines Temperature
- ► 1st Law Energy is Conserved
- 2nd Law Disorder (Entropy) Must Increase
- 3rd Law Defines Absolute Zero Temperature

- A consequence of the Second Law of Thermodynamics
- Carnot's Principle,

- A consequence of the Second Law of Thermodynamics
- Carnot's Principle,

- A consequence of the Second Law of Thermodynamics
- Carnot's Principle,

- A consequence of the Second Law of Thermodynamics
- Carnot's Principle,

- A consequence of the Second Law of Thermodynamics
- Carnot's Principle,

"The efficiency of a quasi-static or reversible Carnot cycle depends only on the temperatures of the two heat reservoirs, and is the same, whatever the working substance. A Carnot engine operated in this way is the most efficient possible heat engine using those two temperatures."

Fine if you are studying steam turbines but what about Heat Pumps?

There IS a Maximum Efficiency!

- $\blacktriangleright \quad \frac{T_H}{T_H T_C} = COP_{Heating,Carnot}$
- Temperatures in Kelvin,
 - $T_{Kelvin} = T_{Celsius} + 273.15$
 - ▶ Or we live around 300 K
- BUT we cannot achieve the Carnot Efficiency without removing all losses and friction which is impossible!
- So why are you wasting our time with this?

Technology	Direct Electric	Air Source	Ground Source

Technology	Direct Electric	Air Source	Ground Source
Source		0	0

Technology	Direct Electric	Air Source	Ground Source
Source		0	0
Load		45	45

Technology	Direct Electric	Air Source	Ground Source
Source		0	0
Load		45	45
Carnot Efficiency		7.1	7.1

Technology	Direct Electric	Air Source	Ground Source
Source		0	0
Load		45	45
Carnot Efficiency		7.1	7.1
Typical Efficiency	1.0	2.8	3.8

Technology	Direct Electric	Air Source	Ground Source
Source		0	0
Load		45	45
Carnot Efficiency		7.1	7.1
Typical Efficiency	1.0	2.8	3.8
Percentage		39.4 %	53.5 %

Technology	Direct Electric	Air Source	Ground Source
Source		0	0
Load		45	45
Carnot Efficiency		7.1	7.1
Typical Efficiency	1.0	2.8	3.8
Percentage		39.4 %	53.5 %

Everything above is about COP at a specific condition, not SCOP which is a different animal!

What about Carbon then...

Technology	Direct Electric	Air Source	Ground Source
Source		0	0
Load		45	45
Carnot Efficiency		7.1	7.1
Typical Efficiency	1.0	2.8	3.8
Percentage		39.4 %	53.5 %
SAP 10.1	136.0 g CO ₂ /kWh	136.0 g CO ₂ /kWh	136.0 g CO ₂ /kWh

What about Carbon then...

Technology	Direct Electric	Air Source	Ground Source
Source		0	0
Load		45	45
Carnot Efficiency		7.1	7.1
Typical Efficiency	1.0	2.8	3.8
Percentage		39.4 %	53.5 %
SAP 10.1	136.0 g CO ₂ /kWh	136.0 g CO ₂ /kWh	136.0 g CO ₂ /kWh
CO ₂ /kWh - Carnot	136 g CO ₂	19.2 g CO ₂	19.2 g CO ₂
CO ₂ /kWh - Typical	136 g CO ₂	48.6 g CO ₂	35.8 g CO ₂

So why the difference between Air & Ground Source?

- Specific Heat Capacity of Air vs Water,
 - $C_{pv} Air = 0.001297 J \cdot cm^{-3} K^{-1}$
 - C_{pv} Water = 4.1796 J·cm⁻³K⁻¹
 - So water is 3,222 times more effective at transferring heat by volume than air
- Fans are also less efficient than water pumps,
 - Air is squidgy water is incompressible
- We can design in the minimum ground loop temperature but not the minimum air temperature
- The humidity of air causes frosting on air coils which has to be defrosted
- Heat Recovery Instantaneous & Inter-Seasonal

	$\triangleright \square \lor \land \bigcirc \bullet \blacksquare$	∰ ~ マ Book1 - Ex	cel 🔎 Search	
	Insert Draw Page	e Layout Formulas	Data Review Vi	ew Help
	Arial ~ 10 ~	A A = = =	≫~ ab Nu	mber V Conditional F
	B I <u>U</u> → 🕂 → 🖉	• <u>A</u> • = = =		· % 9 Format as la
	ي Font	Alig Alig	inment 🛛 N	Jumber 🗔 Sty
	\cdot : \times \checkmark f_x =	B9/(B9-B5)		
	А	В	С	D
	arnot Efficiency	Heating	Cooling	
	Source ETW	0	38	°C
	Source LWT	-4	43	°C
	Source Average	-2	40.5	°C
	Source K	271	313.5	К
	Load EWT	40	15	°C
	Load LWT	45	9	°C
	Load Average	42.5	12	°C
)	Load K	315.5	285	К
0	Carnot Efficiency	7.1	10.0	COP
11				
12				
13				
14				
15				
10				
17 10				
10	Efficiency			
Ready	Efficiency (+)			

Ready

So how to rumble a "Snake Oil" Sale...

- "Our heat pumps have a COP of 6!"
- Ask at what design conditions...

"0/45!"

- Build yourself a little spreadsheet to calculate the Carnot Efficiency...
- Calculate the percentage... 6.0 $\frac{1}{7.1} = 84.5\%$
- Really?
- With Air Source you are doing really well at 35-45%
- With Ground Source 55-65% is good

Questions.....

and thank you for listening & thank you 2nd Lieutenant Carnot! www.gshp.org.uk

> Chris Davidson info@gshp.org.uk

